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Mitrogen fertilizers are necessary fo enhance agricultural production and to sustain
lood security. However, their inefficient use accrues from inherent limitations of the
orop plants as well as the manner in which M fertilizers are formulated, applied and
managed. The main aim of the book is to assess the various aspects of the fate of
lertilizer N in context of the overall N inputs to agricultural systems, with a view to
anhance the efficiency of nitrogen use and reduce the negative impacts on
environment. The cross cutting issues relate to improvement in nitrogen use by
smerging technologies {genetic enhancement, QTL mapping), meeting N needs by
understanding its interactions with other nutrients, and mitigation of nitrogen losses
caused by environmental factors and management practices,

Mitragen Use Efficiency in Plants develops links between basic and applied research
and practical crop production by addressing a wide range of topics relating to
nitrogen use efficizncy, and plant and crop responses to applications of nitrogen via
fartilizers, including nitrogen acquisition and reduction, molecular approaches,
nitrate induction and signaling; and nitrogen use under abiotic siresses.

Nitrogen Use Efficiency in Plants is an invaluable classroom ald for academics
working in plant physiclogy, biochemistry, biotechnology, malecular braading and
ngronomy, and an essential professional resource for researchers working in plar
and crop systems as it provides a comprehensive, interdisciplinary description of
prablems related to the efficient use of nitrogen In agriculiur
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Nitrate Sensing and Signaling in
Genomewide Plant N Response

Navijyoti Chakraborty and Nandula Raghuram®

ABSTRACT

Nitrogen is the most important element in terms of nutrition for plants, nitvate being
the most preferred form. Nitrate not only acts as nutritional element but also as a
signal to modulate metabolism and plant architecture. Nitrate sensing mostly happens
in the roof tip through a hitherto unknown mechanism, but its response can e
demonstrated on an organism-wide scale. Functional genomic studies revealed over a
thousand nitrate-responsive genes, involved not only in N and C metabolisn, but
also in various other physio-logical processes. ldentification of nitrale response
element/s common to all these genes could pave the way to wnravel the mechanism of
nitrate signaling, but findings in this direction have remained inconclusive so far.
Several trans-acting factors have been implicated in N signaling and response, but
none of these have been convincingly demonstrated to be specific to this response.
Nitrate uptake, which is sometimes associated with nitrate sensing, ts also highly
regulated process and involves multiple transport systems like HATS, LATS and
dual affinity transporters. Nitrate signaling also exerts ifs effect in co-ordination
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with various other signals such as hormones and light. A complete understanding of
the nitrate signaling and response, as well as ils interaction with other factors that
regulate plant growth and productivity, requires the integration of physiological,
genomic, proteomic and metabolic engineering approaches.

1. Introduction

As one of the important macronutrient nitrogen (N) modulates
plant growth, plant architecture and inter-organ allocation of
resources. Plants grown on low nitrogen not only exhibit less biomass
accumulation, but also show decreased shoot/ root ratios in comparison
to plants grown on high nitrogen conditions (Kruse ef al. 2002). Plants
respond to even small variation in the supply of nutrients, especially
nitrogen (Forde and Lorenzo 2001, Robinson 1994), Regardless of the
form in which N is supplied, whether urea, ammonia or nitrate, the
microbial process of nitrification in most aerobic soils ensures that
nitrate is the most abundant form and is therefore the main source of
N for plants. It is known since mid-sixteenth century that KNO, affects
plant growth (Glass and Siddigi 1995). Nitrate is taken up from the
soil with the help of nitrate transporters and converted into ammonium
by the sequential action of the enzymes nitrate reductase (NR), nitrite
reductase (NiR), and then incorporated into amino acids through the
glutamine synthetase (GS) and glutamate synthase (GOGAT) cycle.

Nitrate is not only a nutrient but also acts as a signal to reprogram
plant metabolism and architecture (Stitt 1999, Raghuram et al. 2006).
Nitrogen status of the plant regulates the expression of genes related
to N and C metabolism (Vincentz et al. 1993, 5titt ¢t al. 2002, Takei
et al. 2002, Wang et al. 2000), photosynthesis (Sugiharto and Sugiyama

1992), mRNA translation (Suzuki et al. 1994) and cell cycle (Soni et al.
1995).

2. Nitrate Sensing

The ability to sense nitrate and distinguish it from other N
metabolites is an important prerequisite for nitrate signaling.
Substantial evidence has accumulated regarding the existence of nitrate
sensing and signaling, as well as their interactive effects with other N
and C metabolites, though their mechanisms are far from understood
(Corruzi and Zhou 2001). Most of the plant’s sensing for nutrients,
water, etc. happens in the root cap (Barlow 2002). Root tip activity is
also responsive to a set of long-range endogenous signals, which include

phytohormones, sugars a nd probably other less ‘v"-"l'1I|."l'hi'.l';lt'ill'l'll;.lt“;
siomal molecules such as peptides (Takayama a{ml Sagakami 2002,
Hgveridge et al. 2003). Growth of the primary root 1s almost completely
insensitive to the NO; supply.

The NO; assimilatory pathway is NO; -inlduuiblc and the first
evidence that the NO; ion is perceived as a signal by plants cnm:i
from studies showing that the rapid induction of NR genes occurte
even in the absence of NR activity. Studies using alternative N murn::‘rl
(NH,* or glutamine) and an NR-deficient mutant showed thl:..'lt t.l
lateral root tips were stimulated by the NO; ion itself rather tF lnda
product of NO; metabolism (Zhang et al. 19:5”9, Zhang and n:“:
1998). These experiments led to a model i,n which the Iateraldmnt -
a NO; sensory mechanism that enables it to mndulat::e meﬂstam;
activity in response to local changes in the external NO; concentration
(Deng ef al. 1989, Pouteau et al. 1989). Based_ on the ubaervatit;rl'iii on
the response of NR gene to short nitrate pulses in intact barleg,r‘ se 1 1;151,
Tischner et al. (1993) suggested that nitrate acts more as a signal than
as a mere N-source and that the signal transduction apparatus may
be constitutively expressed.

The identification of a nitrate-induced nitrate transporter
confirmed the positive feedback loop {?'say elt al. 199;&}: P;.lrttl;ler
investigations revealed that nitrate response13 alsp involved in 1::1. uc bt;;':
of genes involved in ammonia assimilation (Redinbaugh anf.i Lam}p: .
1993), reductant supply (Ritchie ef al. 1994), cofactor blugyﬂt esis
(Sakakibara et al. 1996), as well as enzymes pf carbon ass_1m11atlc~2
(Champigny and Foyer 1992), such as c?ftnsghc pyruvate kinase and
isocitrate dehydrogenase, mitochondrial citrate synthase g’lcc, ?nl
downregulation of ADP-glucose pyrophosphorylase (Scheible et al.
1997).

The utilization of reduced N (ammonium) towards amino acic:
synthesis through the GS-GOGAT cycle de??nd.s on the avmlabihlt}r 0
carbon (C) skeletons derived from the utilisation _Gf photosynt wlt:c
sugars, which involves the regulation of carbon traffic between starc /
sucrose synthesis and amino acid synthesis. Thus, nitrate “C'fi] as 3
signal for the regulation of metabolite partitioning, organic aci ;.n
amino acid synthesis, starch synthesis z:md redox metal:lunhsm (: ';ﬂ:t
1999). Co-regulation of C and N metabolism became a major fm:t_ls or
researchers, ever since it was found that sugars ?tlmulate nitrate
reductase transcription (Cheng et al. 1992, Coruzzl and Zhou 2001,
Stitt et al. 2002, Stitt and Fernie 2003, Foyer et al. 2003).
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3. Genomewide Nitrate Response

Studies over the last decade have shown that nitrate responsive
gene expression is far more extensive than the range of responses
discussed above. Using microarray studies in Arabidopsis, Crawford
and coworkers (Wang et al. 2000, 2003, 2004) revealed thousands of
nitrate responsive genes spanning up to 10% of the detectable
Arabidopsis transcriptome. Many of them were previously unknown
to be nitrate responsive, including enzymes of the glycolytic pathway
(glucose-6-phosphate isomerase and phosphoglycerate mutase),
trehalose6-P metabolism (trehalose-6-P synthase and trehalose-6-P

phosphatase), iron transport/ metabolism (nicotinamine synthase) and
in sulfate uptake/reduction.

Other groups used subtractive hybridization (SSH) approach to
identify nitrate-responsive genes and characterize their expression in
tomato (Wang et al. 2001) and rice (Wang et al. 2002). Their studies
not only reported the previously known nitrate responsive genes which
included water channels, potassium and phosphate transporters,
ribosomal proteins, stress response proteins, regulatory proteins and

signalling proteins but also high affinity and low affinity nitrate
transporters.

Most, if not all nitrate responsive genes also respond to other
signals, such as light, hormones etc. Recent microarray studies in our
lab have revealed the full list of nitrate and/or light responsive genes
in rice, making it possible to segregate light and nitrate effects for the
first time (Pathak 2010). 1157 genes were found to be differentially
regulated by nitrate in presence of light, whereas 1015 genes were
differentially regulated by nitrate in etiolated plants. A venn selection

of both lists revealed 159 genes, suggesting these are influenced by
nitrate only and not by light.

4. Nitrate Response Elements

Even as the list of nitrate responsive genes in plants has grown
over the years, the mechanism of nitrate-regulation of gene expression
remains largely unknown. Nitrate signaling may culminate in nitrate
response elements (NREs) and trans-acting factors that interact with
them. Therefore, identification of common nitrate response elements
(NREs) would help in unraveling the nitrate signaling pathway
(Raghuram et al. 2006). There were several attempts throughout the
1990s to identify the NRE for NR and NiR, but it was Hwang et al.

(1997) who first claimed that cis-acting elements cumplrisi_ng [(a/ t}?ﬁhﬁf
¢TCA] motif mediate nitrate dupend!ent _transcmptmn of I\.Il 3
Arabidopsis. This was later corroborated in birch for NR (Hachtel an
Strater 2000) and NiR (Warning and Hachtel 2000).

However, our detailed in silico analysis of the entif‘e.dmbldns:lil
and rice genomes revealed that the [(a/ t}?Agf cTCA]_mnhf is ﬁ[.-,.m:u i
distributed throughout these genomes with no dlffEl'Ell‘ll’.“E ¢ we:d
nitrate responsive genes and the presumably rlmnlrespf:-nswe i[.;;nen a
intergenic regions (Das et al. 2007), questioning its validity as a
consensus sequence. Similar results were cbtau}ed in our genomned iy
bioinformatic analysis of other candidate motifs ll_ke GA']?A al f
binding elements implicated in nitrate response in Arabidops s,f Ih.
our own bioinformatic search for new -::a_ndlda'fe NRE mog‘ :h..;
remained inconclusive due to inconsistencies in motif samplers (
et al. 2009). Therefore, the identification nft nitrate response elements
remains an open area for future investigation.

4.1.Trans-acting factors

The role of trans-acting factors in the nitrate response of hiﬁﬂer
plants has remained poorly understood. In _fungl such as Aspergilius
nidulans and Neurospora crassa, induction of nitrate transport by mt{;nte,
as well as the activities of NR and NiR enzymes, are cc:-ntmi!& I;Iy
transcriptional regulatory proteins, NlRfk (A. nidulans) and ;JEA {mi
crassa). Their effect on NR transcription is cnunteractn?d by ﬁ thll
NIT2, respectively, which mediate ammonium-repression whic ! ;;E
to the GATA family of transcription factors [Mar%luf et al, 1997). el
factors have also been implicated in the {eguiatlan of N assim; ah on,
apart from their many other roles known in plants. GATA antils ;\;e
been identified in the regulatory regions of many genes invo ved in
nitrate assimilation such as nitrate rn?ductase (NM?, nitrite Eeguctau;
(NiR) and glutamine synthetase (Jarai et al. 1992, Oliveira and Coruzz

1999, Rastogi et al. 1997).

transcription factors, NIT2 of Neurospora crassa (Tao
and Ir;?:rilll;g?‘laggj and [j"tREﬁ of Aspergillus nidulm?s (Caddick et al.
1986) are GATA factors that globally regulate genes in N membﬂrl\ﬁ?ﬁ
In veast, four global N regulatory factors, namely GLN3, !\_IIL],‘
and DALS0, are GATA factors with a single C_sﬁ:l"h zmc.fmger
(Hofman-Bang 1999). GLN3 and NIL1 are transcriptional achvatnr;i
whereas DALS0 and NIL2 act as negative regulators of multiple
catabolic genes (Hofman-Bang 1999).
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Several features of the regulation of nitrate assimilation are
common between fungi and higher plants. Previous experiments have
shown that NIT2 binds specifically to two fragments of the NIA gene
of tomato in vitro, whereas mutant NIT2 proteins failed to bind to the
same fragments, which suggests that there might be a NIT2-like
homolog regulating the expression of the nitrate assimilation pathway
in higher plants (Jarai et al. 1992). The spinach NiR promoter has been
reported to contain some regions that are involved in N regulation
(Back et al. 1991, Rastogi et al. 1993, 1997) and footprinting results
suggested that GATA factors play a role in NiR gene regulation
(Rastogi ef al. 1997). Bi et al. (2005) reported that one member of the
GATA transcription factor family, GNC is induced by nitrate and plays
an essential role in chlorophyll synthesis and glucose signaling.

NLA (Nitrogen Limitation Adaptation), a RING-type ubiquitin
ligase from Arabidopsis, was found to be a positive regulator of plant
adaptation to N limitation (Peng et al. 2007). DOF transcription factor,
known for its role in light-regulation of gene expression and other
plant responses including regulating the genes of organic acid
metabolism, has also been implicated in N metabolism and N use
efficiency. Overexpression of a maize DOF-factor in transgenic
Arabidopsis improved nitrogen content (by 30%) and growth in the
plants under low-nitrogen supply, accompanied by up-regulation of
multiple genes involved in carbon-skeleton production without any
reduction of NR, GS and GOGAT transcripts (Yanagisawa et al. 2004),

The localized proliferation of lateral roots in nitrate-rich soil patches
is under the control of the MADS box transcription factor ANR1
(Zhang and Forde 1998). Moreover, the nitrate transporter NRT1.1
has been proposed to be a nitrate sensor that acts upstream of ANR1
in this signalling pathway (Remans et al. 2006b). Castaings et al. (2009)
reported that in Arabidopsis, NIN-like protein 7 (NLP7), a putative
transcription factor, is involved in nitrate signal transduction pathway
and also regulates nitrogen assimilation in non-nodulating plants.

4.2. Transporters

Nitrate uptake is a fundamental aspect of plant nutrition, several
families of transporters have been identified (Orsel et al. 2007).
Physiological measurements of nitrate uptake by roots have defined
two systems of high and low affinity uptake. The first higher plant
nitrate transporter gene was isolated from Arabidopsis (Tsay et al. 1993).
[t had 12 putative trans-membrane domains similar to the first
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eukaryotic nitrate transporter isolated from the fungus .r"..upergmli;n
(Unkles et al. 1991) but these transporters were phylogenetica };
unrelated. Physiological investigations of NG"_,, up?:a‘ke Py 'ch;.' rm::il ;:.
many different types of plants have led to the 1dent_tfu:atmn 0 r:m pd
nitrate transporters that differ in terms of nitrate affin ti}rhltr;_
inducibility, which presumably enable l{he plant to cope W t -
variations in NO; concentrations in‘c_ultwated soils {cr'wm:-:d;m;
Glass 1998). Two saturable high affinity transport slyutema ( ’
are able to take up NO; at low external cm}centratmns (1 pM to
mM). The constitutive system (cHﬁT‘S_} is ava_llable even v;;llm plants
have not been previously supplied with NO;. T}‘t& inducible system
(iHATS) is stimulated by NO; in the External_rnedlum. The lw
transport system (LATS) contributes to NO; uptake at E’ggg high
NO; concentrations above 1 mM (Crawford and Glass 1998) (Please
refer to chapter 1 in this volume).

The iHATS is a multicomponent system encoded partly by the
genes of the NRT2 family or nitrate-nitrite porter family uf tfanlro:]t?ﬂ.
Geveral different regulatory mechanisms have been identifie n;
AtNRT2.1 (HATS), which include feedlba-:k regulation mL
phosphorylation. These various chang:es in the prf}tm‘rlll mayth:
important for its second function in sensing .ND-‘ availability a}:
surface of the root. Another transporter protem, AtNRTL a}:.m ?kﬂ
role in NO sensing that is independent of its transport I'unllznon,rf;';
AtNRT2.1. Recently, two dual affinity transporters have _been identi :
in Arabidopsis, AtKUT1 and CHL1 or AtNRTL],: of wh_u:h the latter is
induced as HATS by phosphorylation at threonine ;emdue 101. Up:un
dephosphorylation, it functions as a low affinity _rutratﬁi:l tran:llpmi e:t
This mode of regulation and function may be critical when the pla
is competing for limited nitrogen (Liu and Tsay 2003).

The regulation of NRT2.1 expression has been thoroughly
investigated at the mRNA level, NRT2.1 transcript accumu]a_tlnn
mainly occurs in epidermis and cortex of the mature root regions
(Nazoa et al. 2003), and is strongly influenced b3f a range of different
environmental factors. Expression of I\IRTE:I is induced by N?_‘,
repressed by high N status through a I‘IEgatl‘fE feedl_:rack TEEUI;L on
involving reduced N metabolites such as NH," or amino acids (Zhou
et al. 1999, Nazoa et al, 2003), and stimulated by light and sugars
(Lejay et al. 2003).

The initiation and elongation of lateral root (LK) development is
stimulated by local availability of NO, and it has been proposed in
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Arabidopsis roots that NRT2.1 may itself be a NO; signal transducer
or sensor (Little ef al. 2005). This function of the transporter is reckoned
to be independent from NO; influx (Little ef al. 2005, Remans et al.
2006a). Furthermore, AtNRT1.1 has been implicated in the signalling
pathway triggering root colonization of NO; -rich patches and this
has been linked to changes in the expression of a putative transcription
factor MADS box gene (Remans et al. 2006b). In Arabidopsis, a role for
AtNRTI.1 has been specifically implicated in breaking seed dormancy
(Alboresi et al. 2005) which can provide another useful model system
for studying nitrate signalling in plants like root development.

5. Nitrate and Hormone Signaling
5.1. Cytokinins

Several lines of evidence indicate that cytokinin function as long- -
distance signals that control nitrogen assimilation and status in plants
(reviewed by Sakakibara et al. 2006). It has been known that increasing
nitrate supply through the roots, but not the shoot, induces expression
of genes regulating nitrate and carbon metabolism in leaves, a response
which is also mimicked by addition of cytokinin to plants (Brenner
et al. 2005, Scheible et al. 2004) suggesting that cytokinin may act as
long-range messenger, travelling from root to shoot, to control nitrate
responses. The facts that nitrate application increases cytokinin
biosynthesis and that these hormones can be transported through the
vascular vessels support this hypothesis (Rahayu et al. 2005, Sakakibara
2006). Besides their proposed function as long-distance signals,
cytokinin may also control local responses to nitrogen supply. The
evidence comes from the fact that cytokinin inhibit accumulation of
nitrate and ammonia transporters in roots of nitrate-supplied
Arabidopsis plants, which may represent a negative feedback regulatory
process that slows down nitrogen uptake under non-limiting conditions
(Brenner et al, 2005, Kiba ef al. 2005).

Brenner et al. (2005) measured immediate early and delayed
cytokinin responses through genome-wide expression profiling using
Affymetrix ATH1 full genome array. They found that after 2 h of
cytokinin treatment, a large number of genes coding for transcriptional
regulators, signaling proteins, developmental and hormonal regulators,
primary and secondary metabolism, energy generation and stress
reactions were differentially regulated. It was also found that several
genes of nitrogen metabolism and transport were cytokinin regulated,
including genes encoding a glutamine-dependent asparagine
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synthetase and a glutamate dehydrogenase which .-Ii!u.w:'e-t-u.lij uZI:I:j:nr:::
15-fold upregulation, respectively. The NIA gene tramm}p tﬂindimuﬁs
was increased 2.6-fold after 120 min cytokinin treatrlnrt,? DA
an increased need for NH,*. It is also noteworthy t J‘}u . Tr;; w%m
affinity nitrate transporter genes, NRT2.1, NRT2.3 an 2 “a.rl, -
found to be strongly downregulated after ELE'D mmi p:mﬂ 1}';,.@”
ammonium transporter genes ALMTT!JF, AMT1.2 anu.ll : u].. o
repressed up to one-third of their urlgmfﬂ‘lwe]s, Collectiv It::,n Eess
data support the earlier notion that cytokinin plaj{rs a:m lmfgkjmn v
in regulating N utilization and that early rlespomesk?hu;}rer i £
changed nitrogen availability overlap in part (Ki : .
Sakakibara, 2003, Wang et al. 2003).

5.2. Abscisic acid (ABA) :

Interrelationship between EBA a?dliul-{ate R%::e:isgl;s;ﬁn!‘:smbeteh:
uncovered by analyzing the effect of altering !
response of glants to nitrate resuPply and, r:cmve;sﬂ:hl;, bﬂru?::gy;ll:\agl
nitrate control of ABA biosynthesis. Zhang et al. ( !i 5 i i -
ABA and nitrate signaling share common Fegu]atnry e em: r L
Arabidopsis mutants displaying ABA-insensitive _laters_.l r-::uut 12 g
(labi mutants), which showed reduced sensitivity in their root resp

to nitrate resupply.

.3. Auxins 1 :
: There have been studies to show a Eussible 1rela1:1lan]slr11p EE::;::
nitrate supply and auxins, but thehputcngtpr};}tzﬂcﬁ;; l;nl;:mdmum
are not well understood. It was shown comeiin:

rate of auxins biosynthesis or that of shoot-to-root transpo
?gjtz;d:? ?ﬂ. 2000, Walch-Liu et al. gqnﬁ), Soybean at&dhfﬂ;n:rnli:ﬂ:::
plants grown under low-nitrate conditions aum::un"mllﬁutf:i |1-;E i
of auxins in the root compared with pla:nts grown un ir tL‘g! .
conditions. On the contrary, auxin levels in the sl'lmut c-li nitrate ; I:.;I}mdla

>lants were lower than those of plants grown in a mltral:e-n e
EWaIch—Liu et al, 2006). This altered pattern of auxin accr:lml.fjf o

indicated that these hormones play a role in suppressmgftl e; :mﬁ -

high nitrate supply in root develnpment, such as arre;t of aesti s

proliferation. However, this hd}r}siﬂthiglﬁiiiﬁ ::Pl:.ee i:ir;ne; ;r:; mmﬁ mu;

since application of auxins did not r . m————

i ; grown under high-nitrate conditions, suggesting

:Egeiﬁgget?;;?nﬂ?;hd%}rim directly Ec}ntml nitrate signaling (Zhang

et al. 2007).
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6. Nitrate and Light Signaling

Light is a signal that regulates the expression of many of the nitrate
responsive genes, though it has been studied in depth in only a few of
them. Light has been shown to play an important role as an external
signal for regulation of the expression and activity of NR (Lillo 1994,
Mohr et al. 1992, Sivasankar and Oaks 1996, Pattanayak and
Chatterjee 1998) and has often been reviewed (Raghuram et al. 1999,
Chandok et al. 1997 Tillo and Appenroth 2001). NR has been shown
to be positively regulated by light at two levels: a coarse regulation at
the level of gene expression in the time scale of hours and a fine
regulation at the post-translational level in the time scale of minutes.
In etiolated plants, phytochrome * . the main photoreceptor involved
and its low fluence response (LFR) is the common response mode. The
effect of the very low fluence response (VLFR) has been reported for
NIA2 isoform of NR in Arabidopsis thaliana (Pilgrim ef al. 1993). The
fast post-translational regulation of NR by light is based on the
phosphorylation/dephosphorylation of a serine residue in the hinge 1
region and the subsequent Mg / polyamine-dependent binding of the
phosphorylated form to a 14-3-3 protein (Please refer to chapter 2 in
this book). '

At the transcriptional level, light regulation of NR is considered
to work differently in green plants and etiolated seedlings, involving
different photoreceptors. Using pharmacological approaches, the
phytochrome-mediated regulation of NR gene expression in maize was
linked to signaling events such as G-protein (Raghuram et al. 1999),
phospho inositol (PI) cycle and protein kinase C (Raghuram and Sopory
1995). Light regulation is also known for other N-metabolic genes like
Fd-GOGAT (Hecht and Mohr 1990, Elmlinger and Mohr 1991, Becker
el al. 1993, Teller et al. 1996 and Suzuki et al. 2001), though the role of
specific photoreceptors in it needs to be elucidated further.

7.Conclusions and Perspectives

Despite the tremendous progress made over the last two decades
in exploring nitrate sensing, signaling and response, a complete
understanding of the universal mechanism(s) for any of these aspects
remain elusive. However, we do know the extent of genomewide
nitrate response and the need for common nitrate response elements
and transcription factors for coordinated expression of hundreds of
nitrate responsive genes. We also know the existence of nitrate sensing
and signaling pathways that culminate in gene regulation and a few
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possible events/intermediates in these I?athwa}rs, Wl'ulf:- further wc:rriI:
in this direction may help in understanding gene regulation, p‘mtmn:nth
approaches need to be initiated to estabhsh its correspondence b:;lt ,-
protein levels and post-translational regulation. Only thmugh a bette
understanding of the molecular mechanisms of nitrate smtsu;lg;
signaling and response, Wé will be able to find newer targets 10

improving N-use efficiency in plants.
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Molecular Approaches to Improve
Nitrogen Use Efficiency

Vanita Jain’, Lekshmy S and P Ananda Kumar

ABSTRACT

Nitrogen is the most essential nutrient for all plants and is also the major limiting
factor in plant productivity. High yielding varieties of all crops are responsive to
nifrogen but its ever-incrensing use has shown detrimental impact on the environment
along with extremely low use efficiency. Nitrogen use efficiency (NUE) in crop plants
depends on various internal and external factors, which are dealt in detail. There has
been a significant interest in genelic engineering of the crops to improve NUE. The
use of biotechnological interventions by manipulating genes of the nitrogen utilization
pathway to improve NUE has not been very successful. But fransgenics/mutants
with modified capacities for nitrate uptake, assimilation and remobilization have
enhanced our understanding of the genetic control of NUE. In both cellular, and at
whole plant level the mechanisms involved in N remobilization from the senescing
irgans towards the grain have recently gained importance but their understanding is
still preliminary. Recent evidences have shown that grain filling during later stages
of crop growth is supported by N recycling. The genome wide regulation of the
various genes and interaction between the nitrogen and carbon metabolism is being
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