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Flux-based classification of reactions reveals a functional bow-tie organization
of complex metabolic networks
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Unraveling the structure of complex biological networks and relating it to their functional role is an important
task in systems biology. Here we attempt to characterize the functional organization of the large-scale metabolic
networks of three microorganisms. We apply flux balance analysis to study the optimal growth states of these
organisms in different environments. By investigating the differential usage of reactions across flux patterns for
different environments, we observe a striking bimodal distribution in the activity of reactions. Motivated by this,
we propose a simple algorithm to decompose the metabolic network into three subnetworks. It turns out that
our reaction classifier, which is blind to the biochemical role of pathways, leads to three functionally relevant
subnetworks that correspond to input, output, and intermediate parts of the metabolic network with distinct
structural characteristics. Our decomposition method unveils a functional bow-tie organization of metabolic
networks that is different from the bow-tie structure determined by graph-theoretic methods that do not incorporate
functionality.
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I. INTRODUCTION

Biological systems provide many examples of the intri-
cate relationship between the structure and functionality of
complex networks [1–7]. Cellular metabolism is a complex
biochemical network of several hundred metabolites that are
processed and interconverted by enzyme-catalyzed reactions
[8–13]. Metabolic networks have a dynamic flexibility that
enables organisms to survive under diverse environmental
conditions. A key goal of systems biology is to unveil the
functional organization of metabolic networks explaining
their system-level response to different environments. To this
end, we have attempted to decompose metabolic networks
into functionally relevant subnetworks. Flux balance analysis
(FBA) has been widely used to harness the knowledge of
large-scale metabolic networks and investigate genotype-
phenotype relationships [14–16]. FBA has been successful in
predicting the growth and deletion phenotypes of organisms
[17–19]. Reaction fluxes carry information about the flows on
metabolic networks and, as such, describe the functional use
of the network by the organism. In this paper, we have used
this information to decompose the network into functionally
relevant subnetworks.

The paper is organized as follows: In Sec. II we describe the
modeling framework in which we study metabolic networks.
In Sec. III we discuss the classification of active reactions
in metabolic networks into three categories by an algorithm
that is blind to their biochemical roles. Section IV shows that
the three categories are functionally relevant for the organism.
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In Sec. V we compare the bow-tie architecture obtained by
our functional classification of reactions with that obtained
by graph-theoretic methods that do not employ functional
information. In the last section we conclude with a summary.

II. MODELING FRAMEWORK

A. Flux balance analysis

FBA is a computational approach widely used to analyze
the capabilities of genome-scale metabolic networks [14–16].
The stoichiometric matrix S encapsulates the stoichiometric
coefficients of different metabolites involved in various re-
actions of the metabolic network. The stoichiometric matrix
S = (Spj ) has dimensions P ×N , where P denotes the number
of metabolites and N denotes the number of reactions in
the metabolic network. Spj is the number of molecules of
the metabolite p produced in reaction j (if metabolite p is
consumed in reaction j , Spj is negative). The stoichiometric
matrix for a hypothetical reaction network is shown in Fig. 1.
FBA primarily uses the structural information of the metabolic
network contained in the matrix S to predict the possible
steady state flux distribution of all reactions and the maximum
growth rate of an organism. In any metabolic steady state,
the metabolites achieve a dynamic mass balance wherein the
vector v of fluxes through the reactions satisfies the following
equation representing the stoichiometric and mass balance
constraints:

S · v = 0. (1)

Equation (1) is an underdetermined linear system of equations
relating various reaction fluxes in genome-scale metabolic
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R4: 4B D + A
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FIG. 1. Example of the stoichiometric matrix for a hypothetical
reaction network. The hypothetical reaction network has six reactions
involving five metabolites. The rows of the stoichiometric matrix
correspond to various metabolites and the columns correspond to
various reactions in the metabolic network.

networks leading to a large solution space of allowable fluxes.
The space of allowable solutions can be reduced by incor-
porating thermodynamic and enzyme capacity constraints. To
obtain a particular solution, linear programming is used to find
a set of flux values (a particular flux vector v) that maximizes
a biologically relevant linear objective function Z. The linear
programming formulation of the FBA problem can be written
as

max Z = max {cTv|S.v = 0,a � v � b}, (2)

where vectors a and b contain the lower and upper bounds
of different fluxes in v and the vector c corresponds to the
coefficients of the objective function Z. In FBA, the objective
function Z is usually taken to be the growth rate of the
organism. The environment, or medium, is defined in this
approach by the components of a and b corresponding to the
transport reactions, which determine, in particular, the set of
metabolites whose uptake is allowed.

B. Large-scale metabolic networks

In this work, we have analyzed the large-scale metabolic
networks of three microorganisms: Escherichia coli (version
iJR904 [20]), Saccharomyces cerevisiae (version iND750
[21]), and Staphylococcus aureus (version iSB619 [22]).
Table I gives the number of metabolites and reactions
in the metabolic networks of these three organisms. The
metabolic networks contain internal and transport reactions.
Internal reactions occur within the cell boundary. Transport
reactions represent processes involving the import or export
of metabolites across the cell boundary. Each model also
contains a pseudobiomass reaction that simulates the drain
of various biomass precursor metabolites for growth in the
specific organism. Starting from the published metabolic
network, we obtain an equivalent reaction network as follows:
Every reversible reaction in the network is converted into two
one-sided (irreversible) reactions so that all reaction fluxes in
the equivalent system are nonnegative. A few reactions appear
in duplicate in these networks, and only a single copy of each
reaction is kept in the equivalent network. The equivalent
metabolic network is a reaction set consisting of N unique
one-sided reactions where N is 1167, 1576, and 863 for E.
coli, S. cerevisiae, and S. aureus, respectively (cf. Table I).

TABLE I. Comparison of the three metabolic networks: E. coli,
S. cerevisiae, and S. aureus.

Property E. coli S. cerevisiae S. aureus

Number of metabolites 761 1061 648
Number of reactions in the model 931 1149 641
Number of one-sided reactions 1167 1576 863

in the equivalent network
Number of external metabolites 143 116 84
Number of organic external 131 107 68

metabolites (carbon sources)
Number of biomass metabolites 49 42 56
Number of feasible minimal 89 43 27

environments
Number of active reactions 585 482 418
Number of reactions in category I 185 89 84
Number of reactions in category IIa 147 117 194
Number of reactions in category IIb 42 46 28
Number of reactions in category III 211 230 112

C. Feasible minimal environments and associated flux vectors

In this work, we have considered “minimal” aerobic
environments: minimal in the sense that each environment
contains a single organic external metabolite that is the sole
source of carbon, and single inorganic sources for each of
the elements nitrogen, phosphorus, sulphur, oxygen, sodium,
potassium, and iron, apart from hydrogen ions and water. Aer-
obic means that molecular oxygen is available in the external
medium. Furthermore the minimal environments differ from
each other solely in their organic carbon source; the set of
inorganic sources is the same for all the minimal environments
considered here for any given organism. Thus the number
of environments we consider for each organism coincides
with the number of organic external metabolites (carbon
sources) in its metabolic network (cf. Table I). We further
assume that each environment contains a limited amount
of the organic carbon source and unlimited amounts of the
inorganic metabolites, namely, ammonia (source of nitrogen),
pyrophosphate (source of phosphorus), sulphate (source of
sulfur), molecular oxygen, ions of sodium, potassium, iron
and hydrogen, and water molecules. From this set of minimal
environments, we used FBA to determine the subset of
minimal environments supporting growth in the metabolic
networks of E. coli, S. cerevisiae, and S. aureus. A minimal
environment was termed as feasible if the growth rate predicted
by FBA was found to be nonzero for that environment. The
number M of feasible minimal environments in E. coli, S.
cerevisiae, and S. aureus was obtained to be 89, 43, and 27,
respectively (cf. Table I) [23]. For each organism, and for each
feasible minimal environment for that organism, we obtained
an N -dimensional optimal flux vector v using FBA whose
component vj gives the flux of reaction j . For every organism
this led to a set of M flux vectors corresponding to the M

feasible minimal environments, which were stored in the form
of a matrix V = (vα

j ) of dimensions N × M where the rows
(j = 1,2, . . . ,N) correspond to different reactions in network
and columns (α = 1,2, . . . ,M) to different feasible minimal
environments. vα

j is defined as the flux of reaction j in the
optimal flux vector v obtained for environment α.
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D. Active reactions

A given reaction j is termed as active in an environment
α if vα

j > 0. The activity m of a reaction denotes the number
of minimal environments in which the reaction is active. The
activity m for a reaction ranges from 0 to M with M equal to 89,
43, and 27 for E. coli, S. cerevisiae, and S. aureus, respectively.
A reaction j is termed as active in an organism if m � 1 (i.e.,
if it is active in at least one feasible minimal environment for
that organism). The number of active reactions in E. coli, S.
cerevisiae, and S. aureus was obtained to be 585, 482, and
418, respectively (cf. Table I). This paper primarily focuses
on decomposing this set of active reactions into functionally
relevant subnetworks.

III. CLASSIFICATION OF ACTIVE REACTIONS

We ask the question: How does the activity of a reaction vary
across different environments? To address this question, we
determine the frequency distribution of the activity of reactions
in an organism. Figure 2 shows the histogram of the activity
of reactions in the E. coli metabolic network. The distribution
is bimodal. Most reactions in E. coli are either once-active
(m = 1) or always active (m = 89); the number of reactions
for any given intermediate activity m in the range 1 < m < 89
is small. Thus, the largest number of active reactions in the
metabolic network are used in either one environment or
in all environments. The histograms of activity of reactions
in S. cerevisiae and S. aureus also have a pattern similar

to that in E. coli (cf. Fig. 2). The frequency distribution of
activity of reactions in the three organisms suggests a natural
classification of active reactions into three categories:

(a) Category I reactions or once-active reactions (m = 1);
(b) Category II reactions or always active reactions (m =

M);
(c) Category III reactions with intermediate activity (1 <

m < M).

A. Subclassification based on correlation of reaction fluxes

The clustering of gene expression data using the correla-
tion coefficient has been successful in predicting regulatory
modules associated with a biological function across diverse
conditions [24]. We used the correlation coefficient to identify
sets of reactions whose fluxes are correlated across different
environments. We used the set of M flux vectors corresponding
to M feasible minimal environments contained in the matrix
V = (vα

j ) to obtain the matrix C = (Cjk) where Cjk is the
correlation coefficient between two active reactions j and k

and is given by

Cjk = 1

M

M∑
α=1

vα
j vα

k

φjφk

, where φj =
√√√√ 1

M

M∑
α=1

vα
j

2. (3)

If Cjk = 1 then reactions j and k are perfectly correlated
with each other in the given set of environments. Perfect
clusters in metabolic networks are maximal sets of reactions
that are perfectly correlated to each other pairwise. Perfect

FIG. 2. (Color online) The histogram of activity of reactions in the E. coli metabolic network. The bars show the number of reactions that
have an activity m where m ranges from 1 to 89 feasible minimal environments in the E. coli metabolic network. The green bar (extreme left)
represents 185 category I reactions which are once-active. The bar on the extreme right represents the 189 always active category II reactions,
of which the lower pink portion represents 147 category IIa reactions that have fluxes perfectly correlated across environments, and the upper
deep blue portion represents category IIb (the remaining 42 reactions of category II). The cyan bars (all except the extreme left and right bars)
account for 211 category III reactions with intermediate activity. Insets: Histograms of activity of reactions in S. cerevisiae and S. aureus. The
three categories of reactions in S. cerevisiae and S. aureus were defined in a manner similar to E. coli.
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clusters are similar to enzyme subsets [25,26], correlated
reaction sets [27,28], or fully coupled sets [29] which have
been used to detect modules in metabolic networks.

We use Eq. (3) to identify perfect clusters in metabolic
networks of E. coli, S. cerevisiae, and S. aureus. In particular,
a large perfect cluster of 147 reactions was found in E.
coli that is a subset of category II reactions. We refer to
this subset of perfectly correlated reactions within category
II as category IIa reactions. The remaining 42 category II
reactions that are always active but not perfectly clustered with
category IIa reactions are part of category IIb. Similarly, large
perfect clusters of sizes 117 and 194 were found in category
II reactions of S. cerevisiae and S. aureus, respectively. In
Fig. 2, category IIa and IIb reactions are shown in pink and
blue colours, respectively. We have shown elsewhere that
perfect clusters are metabolic modules that can be explained by
studying the connectivity of their constituent metabolites [23].

As mentioned earlier, we obtained the flux vectors by
maximizing the objective function Z that corresponds to the
growth rate of the cell. In FBA cell growth stands for the
production of all the “biomass metabolites” in specified ratios
that correspond to the composition of the average cell under
consideration. The role of growth maximization is to obtain an
explicit flux vector for each medium. While the magnitudes of
the components of v obtained by maximization of the growth
rate depend upon the precise ratios, the activity of a reaction,
as defined above, depends not on the actual magnitude of
the corresponding component of v, but only on whether the
magnitude is zero or nonzero. The vanishing (or otherwise)
of the magnitude does not depend upon the precise ratios of
the biomass metabolites in the objective function, but only
on the set of metabolites that are present in the objective
function. Thus our classification results are quite robust to the
perturbation of the ratios in the objective function, as long as
the set of biomass metabolites is held fixed (details not shown).

Note that we have used a single optimal flux vector v
obtained using FBA for each of the M feasible minimal
environments to determine the activity of a reaction and
the set of active reactions in the metabolic network of an
organism. However, it is well known that there exist multiple
flux vectors or alternate optimal solutions in most large-
scale metabolic networks that maximize growth in a given
environment [28,30–32]. In principle, due to the presence
of alternate optima, the set of active reactions can change
depending on the choice of the flux vectors. In Appendix A,
we show the robustness of our reaction categories to the
presence of alternate optima.

B. Scatter plot of standard deviation versus mean flux
of reactions across environments discriminates between

the three categories

For each active reaction, following Almaas et al. [33], we
have calculated the mean flux 〈v〉 and the standard deviation
σ around this mean by averaging the flux of the reaction
over M feasible minimal environments. Figure 3 shows the
scatter plot of σ versus 〈v〉 for active reactions in E. coli. It
is evident that the distribution of points is different for the
various categories we have defined. All category I points lie
on the upper line, all category IIa points lie on the lower line,

FIG. 3. (Color online) Standard deviation versus mean flux of
active reactions in the E. coli metabolic network. The plot shows
standard deviation σ versus mean flux 〈v〉 of the 585 active reactions
in E. coli metabolic network across M = 89 feasible minimal
environments on a logarithmic scale. The green, pink, dark blue, and
cyan dots represent category I, IIa, IIb, and III reactions, respectively.
The three categories of reactions show up quite distinctly (upper
line, category I; lower line, category IIa; with category IIb and
category III in between the two lines). The upper line is the expected
curve σ = (M − 1)1/2〈v〉 for category I reactions. The lower line is
the expected curve σ = b〈v〉 for perfectly correlated category IIa
reactions with b = 0.98 ± 0.1 obtained via best fit to the data. Insets:
Scatter plots of σ versus 〈v〉 of active reactions in S. cerevisiae and
S. aureus metabolic networks.

while category IIb and category III points lie largely in between
the two lines. The upper line in Fig. 3 is the expected curve
σ = (M − 1)1/2〈v〉 for category I reactions and the lower line
is the curve σ = b〈v〉, where b is obtained via best fit of data
for category IIa reactions. Appendix B gives the derivation of
the relation between σ and 〈v〉 for category I and IIa reactions.
Our classification of reactions into the three categories did not
use the actual values of the fluxes of the reactions, but only
the information about whether the flux was zero or nonzero
in a particular medium. Figure 3 uses information about the
actual flux values. It shows that the different categories of
reactions are distinct from each other by virtue of the statistical
properties of their magnitudes as well.

IV. FUNCTIONAL RELEVANCE OF THE THREE
CATEGORIES OF REACTIONS

Until now our classification of active reactions into the three
categories was solely motivated by the activity of reactions in
E. coli, S. cerevisiae, and S. aureus with two very prominent
peaks for once-active and always active reactions (cf. Fig. 2).
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FIG. 4. (Color online) Category I reactions in E. coli. This figure shows the bipartite graph of 185 category I reactions in E. coli. Rectangles
represent reactions and ovals metabolites. External nutrient metabolites (organic carbon sources) are depicted in green and biomass metabolites
in pink. For convenience, we have chosen to omit the high degree currency metabolites (such as ATP) from the figure to reduce clutter and
focus on the biochemically relevant transformation in each reaction. Abbreviation of metabolites and reactions are as in iJR904 model [20].
The figure was drawn using GRAPHVIZ software [34]. The high resolution electronic version of this figure can be zoomed in to read node labels
and biochemical categories of boxes. We have classified the external metabolites and grouped together their input pathways in boxes based on
biochemical similarity.

However, we now show that our three categories I, II, and
III obtained using a computational algorithm blind to the
biochemical nature of pathways correspond to the input,
output, and intermediate subnetworks, respectively. Thus, each
category of reactions is a subnetwork with a distinct functional
role in metabolism.

A. Category I: Fan-in of input pathways

Figure 4 shows the subnetwork of all 185 category I
reactions in E. coli. The figure shows a number of essentially
linear paths of one to about five reactions starting from an
external nutrient metabolite, often converging to some other
metabolite. These are the input pathways of those metabolites,
typically starting from their transport reaction that brings
them into the cell, and subsequent catabolic reactions that
break them down into other metabolites. Input pathways of 86
out of the 89 external nutrient metabolites (carbon sources)
characterizing different feasible minimal environments are
contained in category I, thereby implying that category I
essentially covers all the input pathways of metabolism.
Similarly, we find that category I reactions in S. cerevisiae
and S. aureus contain input pathways for most external
nutrient metabolites characterizing different feasible minimal
environments. Thus, category I essentially corresponds to
input part of the metabolic network.

Figure 5 shows a portion of category I reactions belonging
to sugar input pathways in E. coli where several external sugar
metabolites converge downstream into a few intermediate
metabolites. Thus, the input pathways in category I exhibit
the fan-in property whereby diverse external nutrient metabo-
lites are first catabolized into a smaller set of intermediate
metabolites before being drawn into the interior of the
metabolic network. Usually the external nutrients whose input
pathways converge to a common metabolite belong to the
same biochemical class (cf. Figs. 4 and 5). Figure 4 contains a
number of disconnected subgraphs each describing the input

pathways of one or more biochemically similar metabolites;
these disconnected paths get connected to the larger metabolic
network via further downstream reactions that belong to other
categories and are not shown in Fig. 4.

B. Category II: Output biosynthetic pathways

A key biological function of the metabolic network is to
convert nutrient metabolites in the environment into biomass
metabolites required for growth and maintenance of the cell.

Sugars

Monosaccharides

Disaccharides

g6p[e]

G6Pt6_2

gal[e]

GALt2

glc-D[e]

GLCt2 GLCpts

lcts[e]

LCTSt

melib[e]

MELIBt2

sucr[e]

SUCpts

t re [e ]

TREpts

gal g6pglc-D

suc6p

FFSD

fru

XYLI2i

lcts

LACZ

melib

GALS3

t r e 6 p

TRE6PH

FIG. 5. (Color online) A small portion of category I subnetwork
in E. coli showing sugar input pathways. The figure shows category
I reactions in the input pathways for external nutrient metabolites
classified into the biochemical category “Sugars.” Two kinds of
sugars are shown here: monosaccharides and disaccharides. The input
pathways for seven external sugar metabolites fan-in downstream
into three monosaccharide metabolites which occur at the boundary
between category I and III subnetworks. Conventions are the same as
in Fig. 4.
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FIG. 6. (Color online) Category IIa reactions in E. coli. This figure shows the graph of 147 category IIa reactions in E. coli whose reaction
fluxes are perfectly correlated across minimal environments. Conventions are the same as in Fig. 4. The preponderance of biomass metabolites
(pink shaded ovals) in this figure signifies that these reactions are at the output end of the metabolic network. The reactions have been grouped
together into boxes based on common biosynthetic pathways.

The biomass metabolites, which include all the amino acids,
nucleotides, lipids, and certain cofactors, may be considered
to be the output of the metabolic network. Category II
reactions are always-active and have a nonzero flux for any
feasible minimal environment. We found that the category II
subnetwork has biosynthetic pathways for 30 out of the 49
biomass metabolites in E. coli. These pathways are typically
the sole production pathways of those biomass metabolites in
E. coli [23]. Thus, this subnetwork is at the output end of the
metabolism.

Of the 189 category II reactions in E. coli, 147 reactions
belong to category IIa, whose fluxes are perfectly correlated
across the different minimal environments. Figure 6 shows the
graph of the category IIa subnetwork in E. coli, which is the
single largest perfect cluster of reactions. The remaining 42
reactions in category II constitute the category IIb; these are
always active but not perfectly correlated with category IIa
reactions and with each other. Thus, the fluxes of category
IIb reactions vary in a more complicated manner across
minimal environments. Categories IIa and IIb exist with
similar properties in the metabolic networks of the other
two organisms (cf. Table I). In our previous work, we have
shown that most of the category II reactions are essential
for growth irrespective of the environment [23]. The set
of category II reactions is a superset of reactions in the
activity core found earlier by Almaas et al. [35] which
are reactions always used across minimal as well as rich
environments.

C. Category III: Intermediate pathways between
input and output

Figure 7 shows the subnetwork of category III reactions
in E. coli, which are neither once-active nor always active;
the activity of these reactions depends on the availability of
nutrients in a more complicated manner. Category III reactions
may be considered to constitute the intermediate part of the
network. By comparing the structures of the three categories,
it is evident that category III has a highly reticulate and
complex architecture compared to categories I and II. There is
a functional reason for the observed complexity in the category
III subnetwork. The biomass metabolites collectively contain
several different types of chemical structures (moieties), and
the E. coli metabolic network is capable of producing these
biomass metabolites from different minimal environments,
each containing a different (and single) carbon source. A
typical external carbon source has one or a few moieties with
different nutrients containing different subsets of moieties.
Category I reactions transport the carbon sources into the
cell and break it down into a small set of moieties. The
function of category III reactions is to start with a small
set of moieties and produce all the moieties required for
biomass production. This requires a complex set of internal
transformations and the exact set of transformations required
depends on the nature of the input moieties. Thus, the activity
of category III transforming reactions depends upon the
biochemical nature of available nutrients in different minimal
environments. We find that category III contains most of the
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FIG. 7. (Color online) Category III reactions in E. coli. This figure shows the network of reactions that are active in two or more minimal
environments considered, but not in all the environments. Conventions are the same as in Fig. 3. Comparing this graph of category III reactions
with category I and IIa reactions (cf. Figs. 4 and 5), it is evident that category III subnetwork has a highly reticulate structure with many loops.
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reactions in central metabolism such as the citric acid cycle. A
similar architecture of the category III subnetwork was found
in the metabolic networks of the other two organisms as well.
Some of the biomass metabolites are produced in category
III itself. For the other biomass metabolites category III
produces precursors which are then taken up in the biosynthetic
pathways of category II to produce the biomass metabolites.

V. COMPARISON OF FUNCTIONAL BOW-TIE
DECOMPOSITION WITH GRAPH-THEORETIC

BOW-TIE DECOMPOSITION

Ma and Zeng [11,36] have used graph-theoretic measures
to reveal a bow-tie architecture of metabolic networks similar
to that seen in World Wide Web (WWW) [37], wherein
the network can be decomposed into an in-component, out-
component, and a giant strong component. Given a directed
graph, a strong component is a maximal subgraph such that for
any pair of nodes i and j in the subgraph there exists a directed
path from i to j and from j to i within the subgraph. In general,
a directed graph can have many strong components, and the
strong component with the largest number of nodes is desig-
nated as the giant strong component (GSC). The associated in-
component consists of nodes which have access to GSC nodes
via some directed path, but cannot be reached from any GSC
node via a directed path. The out-component consists of nodes
which can be reached from the GSC nodes via some directed
path, but lack access to any GSC node via a directed path. A
picture of the ideal graph-theoretic bow tie is shown in Fig. 8.

In this work, we have decomposed the metabolic network
into three categories using a simple algorithm based on activity
patterns of reactions across different minimal environments.
Our categorization reveals a functional bow-tie architecture
wherein the input pathways (category I reactions) fan into

FIG. 8. (Color online) The ideal graph-theoretic bow-tie for
a directed bipartite graph. The figure depicts the ideal bow-tie
decomposition of a directed bipartite graph into three components:
the in-component (represented by the green shaded region to the
left of the figure), the out-component (pink, right) and giant strong
component (blue, center). Ovals represent objects (e.g., metabolites
in the metabolic network) and rectangles processes (e.g., chemical
reactions) that modify or combine objects to produce other objects.
The figure shows pathways starting from the input nodes in the in
component (dark ovals in the green region to the left) and converging
to an irreducible subgraph representing the giant strong component
(blue region in the center). Output paths fan out from the giant strong
component and terminate in the output nodes in the out component
(dark ovals in the pink region to the right).

intermediate metabolism (category III reactions) which forms
the knot of a bow-tie and from where the output pathways
(category II reactions) for various biomass components fan out.

In our functional bow-tie decomposition, the three cat-
egories I, II, and III of reactions discussed above broadly
correspond to the in-component, out-component, and GSC,
respectively, of the graph-theoretic bow-tie decomposition
by Ma and Zeng [11,36]. However, the corresponding sets
of reactions in the two decompositions differ in detail. For
example, we find that the end products of several (and often
long) chains of reactions in the category II subnetwork are
recycled resulting in feedback loops. Such feedback loops in
the category II subnetwork presumably minimize wastage and
could be instrumental in producing the biomass metabolites
in the desired ratios. An example of such a feedback loop
in category II subnetwork is the one involving metabolite
5mdr1p (which can be seen in the electronic version of Fig. 6
upon zooming). The biosynthetic pathways involved in such
feedback loops appropriately belong to the output part of
metabolism because they connect the precursor metabolites to
the outputs. However, the graph-theoretic bow-tie decomposi-
tion would classify such category II reactions in feedback loops
into the GSC. Thus, our functional bow-tie decomposition
based on fluxes of reactions across different environments
gives a better insight and is biochemically more realistic. The
picture of the metabolic network our decomposition reveals is
similar in spirit to the one envisioned by Csete and Doyle [12].

VI. DISCUSSION AND CONCLUSION

In this paper, we have performed flux balance analysis
(FBA) for the metabolic networks of three microorganisms: E.
coli, S. cerevisiae, and S. aureus to obtain fluxes of reactions
in the network under diverse environmental conditions. We
have followed a purely algorithmic approach leveraging on the
predicted fluxes of reactions across different minimal environ-
ments to decompose the metabolic network into functionally
relevant subnetworks. We find that the activity of a reaction
given by the number of minimal environments for which it
has a nonzero flux is an important indicator of the functional
role of a reaction. We have classified the reactions into
three functional categories based on their activity. Category
I contains once-active reactions which are used in only one
minimal environment. Most reactions belonging to the cate-
gory I subnetwork are uptake pathways for external nutrients
in feasible minimal environments, and the primary function of
these reactions is to catabolize external nutrients into simpler
metabolites which can be further processed by intermediary
metabolism. Category II contains always active reactions
which are used in all minimal environments. The category
II subnetwork is critical for the survival of the organism and
accounts for the majority of the biosynthetic pathways for the
production of the biomass metabolites at the output end of
metabolic network. Category III contains reactions which are
used in an intermediate number of minimal environments, and
is responsible for generating the “precursor” molecules that are
eventually converted into biomass metabolites by category II
reactions. We find that while category I and II subnetworks
are dominated by simple linear pathways, the structure of
the category III subnetwork is highly reticulate. In summary,
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our decomposition method for large-scale metabolic networks
based on activity of reactions captures the proposed functional
bow-tie organization by Csete and Doyle: the input pathways
(category I reactions) for nutrients in the environment fan
into intermediate metabolism (category III reactions) which
forms the knot of bow-tie from where the output biosynthetic
pathways (category II reactions) for biomass components fan
out. Our results are valid for metabolic networks of three
phylogenetically different organisms (two distinct prokaryotes
and a eukaryote), which suggests that the observed functional
bow-tie organization could be quite common in living systems.

Our functional classification of reactions uses an important
additional piece of information that the purely graph-theoretic
classification does not, namely, the list of the biomass metabo-
lites that are the outputs of metabolism. The question arises as
to whether the classification predicted by the graph-theoretic
approach could be significantly improved by including this
information (say, by somehow tagging the biomass metabolites
in the graph). We think that this is unlikely. There does not
seem to be any obvious method of utilizing this information
in a purely topological analysis of the network. One might
consider declaring these tagged metabolites to be present
only at the output end of the network and thus exclude
them (by hand) from the intermediate pathways. However,
we note that while biosynthetic pathways of 30 of the biomass
metabolites were found in category II reactions, several of
the biomass metabolites were synthesized in the category III
reactions. These last metabolites such as alanine and valine
are thus not only the outputs of metabolism, they also play
an important role in the intermediate pathways required for
the interconversion and synthesis of other metabolites. Thus a
declaration such as the above would not be appropriate.

We remark that in the present work we have classified
only the reactions of the metabolic network into three broad
categories: input, output, and intermediate. The classification
of metabolites is more subtle and we intend to report on this
in another contribution. While some metabolites participate in
reactions belonging to only one of the three categories, several
participate in reactions belonging to more than one category.
This last set of metabolites includes the currency metabolites
such as ATP, ADP, NADP, NADPH, and so on. It is important
to note that our flux-based categorization of reactions does not
involve the a priori exclusion of the high degree currency
metabolites as was needed in the graph-theoretic bow-tie
decomposition of the metabolic network [11,36].

Cellular metabolism is only one of a large class of functional
systems where inputs are transformed into outputs through
“reactions” or processes involving disintegrations, conver-
sions, recombinations, and so on. Other examples include any
complex manufacturing facility, or even a production economy
as a whole. Communication systems also share some of the
features. The patterns of flows across the network as captured
by the fluxes of the reactions carry important information about
network architecture and functionality. The methods presented
here could be useful in studying these patterns in fields other
than cellular metabolism.

ACKNOWLEDGMENTS

S.S. and V.G. acknowledge support from the University
Grants Commission (UGC), A.S. from the Council for

Scientific and Industrial Research (CSIR), and S.J. from the
Department of Biotechnology (DBT), India.

APPENDIX A: ROBUSTNESS OF CATEGORIZATION OF
REACTIONS TO ALTERNATE OPTIMAL SOLUTIONS

In this work, FBA was used to obtain a particular flux vector
v or optimal solution that maximizes the objective function
taken as the growth rate in a given minimal environment.
However, for large-scale metabolic networks, there exist
multiple flux vectors v or alternate optimal solutions that
maximize growth in a given minimal environment, i.e., there
are many flux vectors v with exactly the same value of the
objective function but use different alternate pathways in the
network [28,30–32]. FBA finds one of many possible alternate
optima for a given minimal environment that maximizes
growth. In the main text, we have used a single optimal flux
vector v for each of the M feasible minimal environments
to determine the activity of a reaction and the set of active
reactions in the metabolic network of an organism. Since, in
principle, the activity of a reaction can change depending on
the particular flux vector considered, we study the robustness
of our categorization of reactions to the presence of alternate
optima.

Flux variability analysis (FVA) [31] can be used to deter-
mine the set of reactions whose fluxes vary across alternate
optima for a given minimal environment. Specifically, FVA
determines the maximum and minimum flux value that each
reaction can take across alternate optima for a given minimal
environment. FVA involves the following steps.

(a) Determine using FBA the maximum value of the ob-
jective function Z or growth rate vα

biomass in a given minimal
environment α.

(b) Fix the flux of the biomass reaction equal to vα
biomass.

(c) Change the objective function Z to be the flux of a
reaction j .

(d) Using linear programming determine the maximum flux
value vα

j,max of reaction j in the minimal environment α,
constraining the biomass reaction to have a flux equal to
vα

biomass.
(e) Using linear programming determine the minimum flux

value vα
j,min of reaction j in the minimal environment α,

constraining the biomass reaction to have a flux equal to
vα

biomass.
(f) The range vα

j,min to vα
j,max gives the variability of flux of

reaction j across different alternate optima.
(g) The above steps c, d, e, and f can be repeated for every

reaction j in the metabolic network to determine the flux
variability of each reaction across alternate optima for a given
minimal environment α.

We have used FVA to determine vα
j,max and vα

j,min for each
reaction j and for each feasible minimal environment α in
the E. coli metabolic network. A reaction j is designated as
blocked if vα

j,max = 0 for all M feasible minimal environments
[29,38]. We found 329 blocked reactions in the E. coli
metabolic network. The remaining 838 reactions, for which
vα

j,max > 0 for at least some environment α are designated as
potentially active reactions. This set includes the 585 active
reactions considered in the main text. We define a reaction j

as essential for a given minimal environment α if vα
j,min > 0.
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484 reactions were found to be essential for some α in the E.
coli metabolic network which are a subset of the 585 active
reactions considered in the main text. We now classify these
484 reactions into the following three categories.

(a) Essential category I: Reactions which satisfy vα
j,min > 0

for exactly one minimal environment. We found 162 reactions
in the E. coli metabolic network to be in essential category I.
Of these, 153 reactions belong to category I of the main text.

(b) Essential category II: Reactions which satisfy vα
j,min > 0

for all M minimal environments. We found 171 reactions in
the E. coli metabolic network to be in essential category II. All
of these belong to category II of the main text.

(c) Essential category III: Reactions which satisfy vα
j,min > 0

for m minimal environments where 1 < m < M . We found
151 reactions in the E. coli metabolic network to be in essential
category III. Of these, 145 belong to category III of the main
text.

Thus we find that the classification discussed in the main
text which uses a particular flux vector correctly predicts the
essential category I, II, or III of 469 out of the 484 essential
reactions.

APPENDIX B: RELATION BETWEEN STANDARD
DEVIATION σ AND MEAN FLUX 〈v〉 FOR CATEGORY I

AND CATEGORY IIA REACTIONS

In Fig. 3, we plot the standard deviation σ versus the mean
flux 〈v〉 for active reactions in a metabolic network across its
M feasible minimal environments. Here, we derive the relation
between mean flux 〈v〉 and standard deviation σ for reactions
in category I and category IIa shown as upper and lower lines,
respectively, in Fig. 3.

1. Category I reactions

In a given organism any reaction belonging to category I
has activity m = 1, and is active for a single environment (say
α0). The mean flux 〈vj 〉 of a category I reaction j across M

feasible environments is given by

〈vj 〉 = 1

M

M∑
α=1

vα
j = v

α0
j

M
, (B1)

where vα
j is the flux of reaction j in the environment α (α =

1,2, . . . ,M). v
α0
j is the flux of reaction j in the only feasible

minimal environment α0 where the reaction has nonzero value
and in all other feasible minimal environments the flux of
reaction j is 0.

Thus, the standard deviation σj for a category I reaction j

is given by

σj =
√√√√ 1

M

M∑
α=1

(
vα

j − 〈vj 〉
)2

=
√

1

M

[
(M − 1)〈vj 〉2 + (

v
α0
j − 〈vj 〉

)2]

= √
M − 1〈vj 〉, (B2)

where we have used the result in Eq. (B1).

2. Category IIa reactions

The fluxes of reactions in category IIa are perfectly
correlated with each other. This means that the fluxes of
category IIa reactions are proportional to each other having the
same proportionality constant for all minimal environments.
Thus, for a minimal environment α, we can write the flux of
category IIa reaction j as

vα
j = cαv0

j , (B3)

where cα is a constant for the minimal environment α and v0
j

is some number. For any two reactions j and k in category IIa
with fluxes correlated across minimal environments, we have

vα
j

vα
k

= cαv0
j

cαv0
k

= vα′
j

vα′
k

, (B4)

where α and α′ are two different feasible minimal environ-
ments for the organism.

The mean flux of reaction j is

〈vj 〉 = 1

M

M∑
α=1

vα
j = v0

j

1

M

M∑
α=1

cα = v0
j 〈c〉, (B5)

where 〈c〉 is the mean of cα across the set of feasible minimal
environments.

The standard deviation σj for category IIa reaction j is
given by

σj =
√√√√ 1

M

M∑
α=1

(
vα

j − 〈vj 〉
)2 = v0

j

√√√√ 1

M

M∑
α=1

(cα − 〈c〉)2

= v0
j σc = σc〈vj 〉

〈c〉 = b〈vj 〉, (B6)

where we have used the result in Eq. (B5).
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[21] N. Duarte, M. Herrgård, and B. Palsson, Genome Res. 14, 1298

(2004).
[22] S. Becker and B. Palsson, BMC Microbiology 5, 8 (2005).
[23] A. Samal, S. Singh, V. Giri, S. Krishna, N. Raghuram, and

S. Jain, BMC bioinformatics 7, 118 (2006).
[24] M. Eisen, P. Spellman, P. Brown, and D. Botstein, Proc. Natl.

Acad. Sci. 95, 14863 (1998).

[25] T. Pfeiffer, F. Montero, S. Schuster et al., Bioinformatics 15,
251 (1999).

[26] J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, E. Gilles et al.,
Nature (London) 420, 190 (2002).

[27] J. Papin, N. Price, and B. Palsson, Genome Res. 12, 1889
(2002).

[28] J. Reed and B. Palsson, Genome Res. 14, 1797 (2004).
[29] A. Burgard, E. Nikolaev, C. Schilling, and C. Maranas, Genome

Res. 14, 301 (2004).
[30] S. Lee, C. Phalakornkule, M. Domach, and I. Grossmann,

Comput. & Chem. Eng. 24, 711 (2000).
[31] R. Mahadevan, C. Schilling et al., Metabolic Eng. 5, 264

(2003).
[32] A. Samal, Syst. Synth. Biology 2, 83 (2008).
[33] E. Almaas, B. Kovacs, T. Vicsek, Z. Oltvai, and A. Barabási,

Nature (London) 427, 839 (2004).
[34] J. Ellson, E. Gansner, L. Koutsofios, S. North, and

G. Woodhull, in Graph Drawing (Springer, New York, 2002),
pp. 594–597.

[35] E. Almaas, Z. Oltvai, and A. Barabási, PLoS Comput. Biol. 1,
e68 (2005).

[36] H. Ma, X. Zhao, Y. Yuan, and A. Zeng, Bioinformatics 20, 1870
(2004).

[37] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, Computer Networks 33,
309 (2000).

[38] S. Schuster and R. Schuster, J. Math. Chem. 6, 17 (1991).

052708-11

http://dx.doi.org/10.1098/rspb.2001.1711
http://dx.doi.org/10.1098/rspb.2001.1711
http://dx.doi.org/10.1093/bioinformatics/btg177
http://dx.doi.org/10.1016/j.tibtech.2004.07.007
http://dx.doi.org/10.1038/nrmicro1023
http://dx.doi.org/10.1038/nrmicro1023
http://dx.doi.org/10.1038/nbt1401
http://dx.doi.org/10.1038/msb.2009.77
http://dx.doi.org/10.1038/msb.2009.77
http://dx.doi.org/10.1038/84379
http://dx.doi.org/10.1038/84379
http://dx.doi.org/10.1038/nature01149
http://dx.doi.org/10.1038/nature01149
http://dx.doi.org/10.1073/pnas.232349399
http://dx.doi.org/10.1073/pnas.232349399
http://dx.doi.org/10.1186/gb-2003-4-9-r54
http://dx.doi.org/10.1186/gb-2003-4-9-r54
http://dx.doi.org/10.1101/gr.2250904
http://dx.doi.org/10.1101/gr.2250904
http://dx.doi.org/10.1186/1471-2180-5-8
http://dx.doi.org/10.1186/1471-2105-7-118
http://dx.doi.org/10.1073/pnas.95.25.14863
http://dx.doi.org/10.1073/pnas.95.25.14863
http://dx.doi.org/10.1093/bioinformatics/15.3.251
http://dx.doi.org/10.1093/bioinformatics/15.3.251
http://dx.doi.org/10.1038/nature01166
http://dx.doi.org/10.1101/gr.327702
http://dx.doi.org/10.1101/gr.327702
http://dx.doi.org/10.1101/gr.2546004
http://dx.doi.org/10.1101/gr.1926504
http://dx.doi.org/10.1101/gr.1926504
http://dx.doi.org/10.1016/S0098-1354(00)00323-9
http://dx.doi.org/10.1016/j.ymben.2003.09.002
http://dx.doi.org/10.1016/j.ymben.2003.09.002
http://dx.doi.org/10.1007/s11693-009-9025-8
http://dx.doi.org/10.1038/nature02289
http://dx.doi.org/10.1371/journal.pcbi.0010068
http://dx.doi.org/10.1371/journal.pcbi.0010068
http://dx.doi.org/10.1093/bioinformatics/bth167
http://dx.doi.org/10.1093/bioinformatics/bth167
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1007/BF01192571



